Spatial and temporal synchronization of truck platoons

・ロット 4回ット 4回ット 4回ット 4日ッ

Outline

- Platoon planning background
- Platoon planning spatial and temporal synchronization
- Acceptance of platooning technology by truck drivers

Platoon planning - background

Goal - identify open issues in platoon planning

There is still some way to go....

Platoon planning problem

- ▶ Input Origins, destinations, and time schedules of trucks
- Output Platoon routes with meeting and split points

Platoon planning considerations

- Degree of centralization
- Level of automation
- Dynamics

Platoon planning considerations

- Degree of centralization
- Level of automation
- Dynamics

Degree of centralization

<ロ> < 四 > < 回 > < 三 > < 三 > < 三 < の < ()</p>

Levels of automation - Human driven platooning

(ロ) 〈 母 〉 〈 正 〉 〈 正 〉 〈 日 〉 〈 母 〉 〈 三 〉 〈 の ◇ ◇

Levels of automation - Human driven with in platoon resting

・ロット 4 聞 > 4 回 > 4 □ >

Levels of automation - Fully automatic platooning

シック 郎 エルマット 山田 マークマ

Levels of automation - Hybrid platooning

・ロト (雪) (市) (中) (日)

Optimization

- Application of sophisticated meta-heuristics
- Planning methods for more automated platoons

Optimization

- Application of sophisticated meta-heuristics
- Planning methods for more automated platoons

Uncertainty

- Stochastic planning
- Effects of congestion

Optimization

- Application of sophisticated meta-heuristics
- Planning methods for more automated platoons

Uncertainty

- Stochastic planning
- Effects of congestion

System sustainability

- Ensuring greater participation incentives?
- Dealing with strategic behaviour

Optimization

- Application of sophisticated meta-heuristics
- Planning methods for more automated platoons

Uncertainty

- Stochastic planning
- Effects of congestion

System sustainability

- Ensuring greater participation incentives?
- Dealing with strategic behaviour

Network design

- Additional infrastructure at certain locations
- Facility location decisions

Platoon planning - spatial and temporal synchronization

Goal - devise planning methods for platoons

コマック 回 ・ 4 □ ・ 4 □ 0 0

Simple two-truck platoons capture a large chunk of the benefits

Minimization of costs

Centralized human-driven platoon planning

- All trucks travel at the same speed
- ► All truck information is known prior to start of planning process

Problems

Multiple trucks per platoon Multiple platoons per trip

Truck pair routing problem

Two trucks per platoon Single platoon per trip

Solution approaches

Truck platooning problem

Truck pair routing problem

Two phase mixed integer program (MIP) Based on a time expanded network MIP_n - max of n trucks in a platoon (In our experiments n = 2, 3) Reduction to shortest path problem Optimal matching

Solution approaches

Truck platooning problem

Truck pair routing problem

Two phase mixed integer program (MIP) Based on a time expanded network MIP_n - max of *n* trucks in a platoon (In our experiments n = 2, 3)

Reduction to shortest path problem Optimal matching

メロトメ団トメヨトメヨト ヨー ろくぐ

Numerical experiments

Fuel savings factor - 10% Flexibility - 30 min Poll

What is the percentage gap in costs between the optimal truck platooning problem solution and the truck pair routing problem based heuristics? (How much worse is a (b) based solution worse than an (a) based solution?)

Α.	< 5%	C.	10% - 20%
Β.	5%-10%	D.	> 20%

How well do the heuristics perform?

Two of the heuristics get to within 1% of the optimal solution
The poorly performing one gets to within 2-4%.

◆ □ ▶ ◆ 酉 ▶ ◆ 亘 ▶ ◆ 酉 ◆ � � � � � � � � �

How quick are these heuristics?

ロ > < 母 > < 注 > < 注 > 、 注 > く む < く つ く ()

How quick are these heuristics?

Table: Run times of the MIP and different heuristics (in seconds)

Trucks	MIP ₃		MIP ₂		SPP	SPP-MIP	Euclidean
	Phase 1	Phase 2	Phase 1	Phase 2	0		
10	75.000	3.510	53.640	3.507	0.174	41.082	6.50E-07
20	215.768	28.313	146.985	27.171	0.645	173.104	5.90E-07
30	391.208	152.940	284.039	141.694	1.403	420.070	8.70E-07
40	605.050	709.328	342.605	456.584	2.458	678.593	6.40E-07
50	873.838	1897.613	497.229	1033.237	3.949	1116.737	6.20E-07

 SPP heuristic is considerably quicker than MIP and gets to within 1% of the optimal result

How quick are these heuristics?

Table: Run times of the MIP and different heuristics (in seconds)

Trucks	MIP ₃		MIP ₂		SPP	SPP-MIP	Euclidean
	Phase 1	Phase 2	Phase 1	Phase 2	0		
10	75.000	3.510	53.640	3.507	0.174	41.082	6.50E-07
20	215.768	28.313	146.985	27.171	0.645	173.104	5.90E-07
30	391.208	152.940	284.039	141.694	1.403	420.070	8.70E-07
40	605.050	709.328	342.605	456.584	2.458	678.593	6.40E-07
50	873.838	1897.613	497.229	1033.237	3.949	1116.737	6.20E-07

- SPP heuristic is considerably quicker than MIP and gets to within 1% of the optimal result
- Simple two-truck platoon arrangements with one platoon per trip provide a lot of the benefits of more complicated arrangements
- Simple two-truck platoon arrangements are much easier to coordinate and more robust in practice

Some (other) key takeaways

► Heuristics perform well and provide practically more robust solutions

Some (other) key takeaways

► Heuristics perform well and provide practically more robust solutions

An improvement procedure on the heuristic solutions reduces the gap even further in a matter of seconds

Some (other) key takeaways

► Heuristics perform well and provide practically more robust solutions

An improvement procedure on the heuristic solutions reduces the gap even further in a matter of seconds

Most trucks form platoons with an adjustment in their time schedule rather than by making detours from their shortest paths (average detours are under 1km)

Acceptance of platooning technology by truck drivers

Goal - extract possibly existing driver views on platooning and how they think it will affect their jobs

(ロ > 4回 > 4回 > 4回 > 1回 - 22〜

Drivers are not very enthusastic

This study

Focus groups - exploratory - open-ended

Visit truck stops in the country

Conduct focus groups with willing drivers

Focus group structure

Revolves around the three forms of platooning

- Human driven platooning
- Human driven platooning with in-platoon resting
- Hybrid platooning

Focus group structure

Revolves around the three forms of platooning

- Human driven platooning
- Human driven platooning with in-platoon resting
- Hybrid platooning
- Typical focus group 4-7 people and approximately an hour
- Language of focus group Dutch
- Getting truck drivers to participate was a challenge

Some quotes (very roughly translated)

"Truck driving is a like a paid hobby..."

"If platooning becomes a reality, I will quit my job....."

"Platooning can become a reality within 5 years..."

"It will take 20 years for platooning to become a reality.."

"Everyone needs to have the technology for us to see its benefits......"

Overarching results

Drivers differ in their views on already implemented technology

- They make work easier and safer
- They take away autonomy full freedom to continuous tracking

Most drivers agree platooning will become a reality but views on when differ

- Jobs may become meaningless
- Loss of autonomy
- Their jobs may become obsolete
- Their wages may go down

Drivers are not very enthusiastic about platooning

Doubts in capabilities of system

Thank you

(ロト 4 酉 ト 4 亘 ト 4 酉 ト 4 回)